145 research outputs found

    Modelling the interaction of steroid receptors with endocrine disrupting chemicals

    Get PDF
    BACKGROUND: The organic polychlorinated compounds like dichlorodiphenyltrichloroethane with its metabolites and polychlorinated biphenyls are a class of highly persistent environmental contaminants. They have been recognized to have detrimental health effects both on wildlife and humans acting as endocrine disrupters due to their ability of mimicking the action of the steroid hormones, and thus interfering with hormone response. There are several experimental evidences that they bind and activate human steroid receptors. However, despite the growing concern about the toxicological activity of endocrine disrupters, molecular data of the interaction of these compounds with biological targets are still lacking. RESULTS: We have used a flexible docking approach to characterize the molecular interaction of seven endocrine disrupting chemicals with estrogen, progesterone and androgen receptors in the ligand-binding domain. All ligands docked in the buried hydrophobic cavity corresponding to the hormone steroid pocket. The interaction was characterized by multiple hydrophobic contacts involving a different number of residues facing the binding pocket, depending on ligands orientation. The EDC ligands did not display a unique binding mode, probably due to their lipophilicity and flexibility, which conferred them a great adaptability into the hydrophobic and large binding pocket of steroid receptors. CONCLUSION: Our results are in agreement with toxicological data on binding and allow to describe a pattern of interactions for a group of ECD to steroid receptors suggesting the requirement of a hydrophobic cavity to accommodate these chlorine carrying compounds. Although the affinity is lower than for hormones, their action can be brought about by a possible synergistic effect

    Autoxidation Products of the Methanolic Extract of the Leaves of Combretum micranthum Exert Antiviral Activity against Tomato Brown Rugose Fruit Virus (ToBRFV)

    Get PDF
    open7noTomato brown rugose fruit virus (ToBRFV) is a new damaging plant virus of great interest from both an economical and research point of view. ToBRFV is transmitted by contact, remains infective for months, and to-date, no resistant cultivars have been developed. Due to the relevance of this virus, new effective, sustainable, and operator-safe antiviral agents are needed. Thus, 4- hydroxybenzoic acid was identified as the main product of the alkaline autoxidation at high temperature of the methanolic extract of the leaves of C. micranthum, known for antiviral activity. The autoxidized extract and 4-hydroxybenzoic acid were assayed in in vitro experiments, in combination with a mechanical inoculation test of tomato plants. Catechinic acid, a common product of rearrangement of catechins in hot alkaline solution, was also tested. Degradation of the viral particles, evidenced by the absence of detectable ToBRFV RNA and the loss of virus infectivity, as a possible consequence of disassembly of the virus coat protein (CP), were shown. Homology modeling was then applied to prepare the protein model of ToBRFV CP, and its structure was optimized. Molecular docking simulation showed the interactions of the two compounds, with the amino acid residues responsible for CP-CP interactions. Catechinic acid showed the best binding energy value in comparison with ribavirin, an anti-tobamovirus agent.openValeria Iobbi, Anna Paola Lanteri, Andrea Minuto, Valentina Santoro, Giuseppe Ferrea, Paola Fossa, Angela BisioIobbi, Valeria; Paola Lanteri, Anna; Minuto, Andrea; Santoro, Valentina; Ferrea, Giuseppe; Fossa, Paola; Bisio, Angel

    Exhaustive CoMFA and CoMSIA analyses around different chemical entities: a ligand-based study exploring the affinity and selectivity profiles of 5-HT1A ligands

    Get PDF
    The 5-hydroxytryptamine (5-HT1A) receptors represent an attractive target in drug discovery. In particular, 5-HT1A agonists and partial agonists are deeply investigated for their potential role in the treatment of anxiety, depression, ischaemic brain disorder and more recently, of pain. On the other hand, 5-HT1A antagonists have been revealed promising compounds in cognition disorders and, lately, in cancer. Thus, the discovery of 5HT1A ligands is nowadays an appealing research activity in medicinal chemistry. In this work, Comparative Molecular Fields Analysis (CoMFA) and Comparative Molecular Similarity Index Analysis (CoMSIA) were applied on an in-house library of 5-HT1A ligands bearing different chemical scaffolds in order to elucidate their affinity and selectivity for the target. Following this procedure, a number of structural modifications have been drawn for the development of much more effective 5-HT1AR ligands

    Benzimidazole-based derivatives as privileged scaffold developed for the treatment of the RSV infection: a computational study exploring the potency and cytotoxicity profiles

    Get PDF
    Respiratory syncytial virus (RSV) has been identified as a main cause of hospitalisation in infants and children. To date, the current therapeutic arsenal is limited to ribavirin and palivizumab with variable efficacy. In this work, starting from a number of in-house series of previously described anti-RSV agents based on the benzimidazole scaffold, with the aim at gaining a better understanding of the related chemical features involved in potency and safety profiles, we applied a computational study including two focussed comparative molecular fields analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The results allowed us to derive useful suggestions for the design of derivatives and also to set up statistical models predicting the potency and selectivity index (SI1/4CC50/EC50) of any new analogue prior to synthesis. Accordingly, here, we discuss preliminary results obtained through the applied exhaustive QSAR analyses, leading to design and synthesise more effective anti-RSV agents

    A novel mutation in the N-terminal acting-binding domain of Filamin C protein causing a distal myofibrillar myopathy

    Get PDF
    Variants in Filamin C (FLNC) gene may cause either cardiomyopathies or different myopathies. We describe a family affected by a distal myopathy with autosomal dominant inheritance. The onset of the disease was in the third decade with gait impairment due to distal leg weakness. Subsequently, the disease progressed with an involvement of proximal lower limbs and hand muscles. Muscle biopsy, performed in one subject,identified relevant myofibrillar abnormalities. We performed a target gene panel testing for myofibrillar myopathies by NGS approach which identified a novel mutation in exon 3 of FLNC gene (c.A664G:p.M222V), within the N-terminal actin-binding (ABD) domain. This variant has been identified in all affected members of the family, thus supporting its pathogenic role. Differently from previously identified variants, our family showed a predominant leg involvement and myofibrillar aggregates, thus further expanding the spectrum of Filamin C related myopathies

    Molecular Chaperones in the Pathogenesis of Amyotrophic Lateral Sclerosis: The Role of HSPB1

    Get PDF
    open15siGenetic discoveries in amyotrophic lateral sclerosis (ALS) have a significant impact on deciphering molecular mechanisms of motor neuron degeneration but, despite recent advances, the etiology of most sporadic cases remains elusive. Several cellular mechanisms contribute to the motor neuron degeneration in ALS, including RNA metabolism, cellular interactions between neurons and nonneuronal cells, and seeding of misfolded protein with prion-like propagation. In this scenario, the importance of protein turnover and degradation in motor neuron homeostasis gained increased recognition. In this study, we evaluated the role of the candidate gene HSPB1, a molecular chaperone involved in several proteome-maintenance functions. In a cohort of 247 unrelated Italian ALS patients, we identified two variants (c.570G>C, p.Gln190His and c.610dupG, p.Ala204Glyfs*6). Functional characterization of the p.Ala204Glyfs*6 demonstrated that the mutant protein alters HSPB1 dynamic equilibrium, sequestering the wild-type protein in a stable dimer and resulting in a loss of chaperone-like activity. Our results underline the relevance of identifying rare but pathogenic variations in sporadic neurodegenerative diseases, suggesting a possible correlation between specific pathomechanisms linked to HSPB1 mutations and the associated neurological phenotype. Our study provides additional lines of evidence to support the involvement of HSPB1 in the pathogenesis of sporadic ALS.openCapponi, Simona; Geuens, Thomas; Geroldi, Alessandro; Origone, Paola; Verdiani, Simonetta; Cichero, Elena; Adriaenssens, Elias; De Winter, Vicky; Bandettini di Poggio, Monica; Barberis, Marco; Chiò, Adriano; Fossa, Paola; Mandich, Paola; Bellone, Emilia; Timmerman, VincentCapponi, Simona; Geuens, Thomas; Geroldi, Alessandro; Origone, Paola; Verdiani, Simonetta; Cichero, Elena; Adriaenssens, Elias; De Winter, Vicky; BANDETTINI DI POGGIO, MONICA LAURA; Barberis, Marco; Chiò, Adriano; Fossa, Paola; Mandich, Paola; Bellone, Emilia; Timmerman, Vincen

    Fluorometric detection of protein-ligand engagement: The case of phosphodiesterase5

    Get PDF
    Phosphodiesterases (PDEs) regulate the intracellular levels of cAMP and cGMP. The great clinical success of the PDE5 inhibitors, Sildenafil (Viagra), Vardenafil (Levitra) and Tadalafil (Cialis) has led to an increasing interest for this class of enzymes. Recent studies have shown a correlation between tumor growth and PDE5 overexpression, making PDE5-selective inhibitors promising candidates for cancer treatment. The search for such inhibitors rests today on radioactive assays. In this work, we exploit the conserved catalytic domain of the enzyme and propose a faster and safer method for detecting the binding of ligands and evaluate their affinities. The new approach takes advantage of Förster Resonance Energy Transfer (FRET) between, as the donor, a fluorescein-like diarsenical probe able to covalently bind a tetracysteine motif fused to the recombinant PDE5 catalytic domain and, as the acceptor, a rhodamine probe covalently bound to the pseudosubstrate cGMPS. The FRET efficiency decreases when a competitive ligand binds the PDE5 catalytic site and displaces the cGMPS-rhodamine conjugate. We have structurally investigated the PDE5/cGMPS-rhodamine complex by molecular modelling and have used the FRET signal to quantitatively characterize its binding equilibrium. Competitive displacement experiments were carried out with tadalafil and cGMPS. An adaptation of the competitive-displacement equilibrium model yielded the affinities for PDE5 of the incoming ligands, nano- and micromolar, respectively

    A complex phenotype in a child with familial HDL deficiency due to a novel frameshift mutation in APOA1 gene (apoA-IGuastalla)

    Get PDF
    Background We describe a kindred with high-density lipoprotein (HDL) deficiency due to APOA1 g ene mutation in which comorbidities affected the phenotypic expression of the disorder. Methods An overweight boy with hypertriglyceridemia (HTG) and HDL deficiency (HDL cholesterol 0.39 mmol/L, apoA-I 40 mg/dL) was investigated. We sequenced the candidate genes for HTG ( LPL, APOC2 , APOA5, GPIHBP1, LMF1 ) and HDL deficiency ( LCAT, ABCA1 and APOA1 ), analyzed HDL subpopulations, measured cholesterol efflux capacity (CEC) of sera and constructed a model of the mutant apoA-I. Results No mutations in HTG-related genes, ABCA1 and LCAT were found. APOA1 sequence showed that the proband, his mother and maternal grandfather were heterozygous of a novel frameshift mutation (c.546_547delGC), which generated a truncated protein (p.[L159Afs*20]) containing 177 amino acids with an abnormal C-terminal tail of 19 amino acids. Trace amounts of this protein were detectable in plasma. Mutation carriers had reduced levels of LpA-I, preβ-HDL and large HDL and no detectable HDL-2 in their plasma; their sera had a reduced CEC specifically the ABCA1-mediated CEC. Metabolic syndrome in the proband explains the extremely low HDL cholesterol level (0.31 mmol/L), which was half of that found in the other carriers. The proband's mother and grandfather, both presenting low plasma low-density lipoprotein cholesterol, were carriers of the β-thalassemic trait, a condition known to be associated with a reduced low-density lipoprotein cholesterol and a reduced prevalence of cardiovascular disease. This trait might have delayed the development of atherosclerosis related to HDL deficiency. Conclusions In these heterozygotes for apoA-I truncation, the metabolic syndrome has deleterious effect on HDL system, whereas β-thalassemia trait may delay the onset of cardiovascular disease

    Charcot-Marie-Tooth Type 2B: A New Phenotype Associated with a Novel RAB7A Mutation and Inhibited EGFR Degradation

    Get PDF
    The rare autosomal dominant Charcot-Marie-Tooth type 2B (CMT2B) is associated with mutations in the RAB7A gene, involved in the late endocytic pathway. CMT2B is characterized by predominant sensory loss, ulceromutilating features, with lesser-to-absent motor deficits. We characterized clinically and genetically a family harboring a novel pathogenic RAB7A variant and performed structural and functional analysis of the mutant protein. A 39-year-old woman presented with early-onset walking diculties, progressive distal muscle wasting and weakness in lower limbs and only mild sensory signs. Electrophysiology demonstrated an axonal sensorimotor neuropathy. Nerve biopsy showed a chronic axonal neuropathy with moderate loss of all caliber myelinated fibers. Next-generation sequencing (NGS) technology revealed in the proband and in her similarly affected father the novel c.377A>G (p.K126R) heterozygous variant predicted to be deleterious. The mutation affects the biochemical properties of RAB7 GTPase, causes altered interaction with peripherin, and inhibition of neurite outgrowth, as for previously reported CMT2B mutants. However, it also shows differences, particularly in the epidermal growth factor receptor degradation process. Altogether, our findings indicate that this RAB7A variant is pathogenic and widens the phenotypic spectrum of CMT2B to include predominantly motor CMT2. Alteration of the receptor degradation process might explain the different clinical presentations in this family
    corecore